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In [1], Proposition 5.1 and Theorem 5.3 do not hold as stated. In both, the
hypothesis that p < f are the first two elements of Bmin should be replaced
by the hypothesis that p < f are the first two elements of E. Under this
new hypothesis, proofs are valid without change1. However, to avoid a possible
confusion with the notation Bmin = {p, f, . . .}< used throughout the paper, we
should rather write E = {e1, e2, . . .}<.

Proposition 5.1 Let M be an ordered matroid on a set E = {e1, e2, . . .}<. A
basis B of M is internal and uniactive if and only if (E \ B) ∪ {e1} \ {e2} is
internal and uniactive in M∗.

Theorem 5.3 Let M be a bounded acyclic ordered oriented matroid on a set
E = {e1, e2, . . .}<. We have

α(−e1M
∗) =

(
E \ α(M)

)
∪ {e1} \ {e2}.

The duality property in Theorem 5.3 is called the active duality. In the
last part of Section 5, when comparing active duality to linear programming
duality, it is implicitly assumed that p = e1 and f = e2, implying that {e1, e2}
is independent.

[1] E. Gioan, M. Las Vergnas, The active bijection in graphs, hyperplane ar-
rangements, and oriented matroids 1. The fully optimal basis of a bounded
region, European Journal of Combinatorics 30 (8) (2009), 1868–1886.

∗C.N.R.S., Montpellier
†C.N.R.S., Paris
1Independently, in line 10 of the proof of Proposition 5.1, instead of B′−f read (E\B′)\{f}.
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a b s t r a c t

The present paper is the first in a series of four dealing with a
mapping, introduced by the present authors, from orientations
to spanning trees in graphs, from regions to simplices in real
hyperplane arrangements, from reorientations to bases in oriented
matroids (in order of increasing generality). This mapping is
actually defined for ordered orientedmatroids.We call it the active
orientation-to-basis mapping, in reference to an extensive use of
activities, a notion depending on a linear ordering, first introduced
by W.T. Tutte for spanning trees in graphs. The active mapping,
which preserves activities, can be considered as a bijective
generalization of a polynomial identity relating two expressions –
one in terms of activities of reorientations, and the other in terms of
activities of bases – of the Tutte polynomial of a graph, a hyperplane
arrangement or an oriented matroid. Specializations include
bijective versions of well-known enumerative results related to
the counting of acyclic orientations in graphs or of regions in
hyperplane arrangements. Other interesting features of the active
mapping are links established between linear programming and
the Tutte polynomial.
We consider here the bounded case of the active mapping,

where bounded corresponds to bipolar orientations in the case of
graphs, and refers to bounded regions in the case of real hyperplane
arrangements, or of oriented matroids. In terms of activities, this
is the uniactive internal case. We introduce fully optimal bases,
simply defined in terms of signs, strengthening optimal bases
of linear programming. An optimal basis is associated with one
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flat with a maximality property, whereas a fully optimal basis
is equivalent to a complete flag of flats, each with a maximality
property. The main results of the paper are that a bounded region
has a unique fully optimal basis, and that, up to negating all signs,
fully optimal bases provide a bijection between bounded regions
and uniactive internal bases. In the bounded case, up to negating
all signs, the active mapping is a bijection.

© 2009 Published by Elsevier Ltd

1. Introduction

The present paper is the first in a series of four dealing with a mapping from orientations
to spanning trees in graphs, from regions to simplices1 in real hyperplane arrangements, from
reorientations to bases in oriented matroids (in order of increasing generality2). This mapping is
actually defined for ordered oriented matroids. It has been introduced by the present authors for
graphs and different other particular cases in previous papers [7–9]. We present it here for the first
time in full extent and generality. We call it the active orientation-to-basis mapping, in reference to an
extensive use of activities, a notion depending on a linear ordering of the ground set, first introduced
by W.T. Tutte for spanning trees in graphs [22]. We will show later that the active mapping has
bijective formulations.
With the exception of [10], partly written in terms of real hyperplane arrangements, the papers

in the series are written in the language of oriented matroids, which is both general and convenient
for our purpose. We have tried to make them reasonably self-contained. Readers unacquainted with
oriented matroid theory can get an understanding of the active mapping in the context of graphs [8]
or of real hyperplane arrangements [9]. A general reference for oriented matroids is [1] (see also [2]).
For the convenience of the reader, Section 2 recalls the needed background.
The active mapping is a bijective generalization of a polynomial identity relating two expressions

in terms of activities of the Tutte polynomial of an oriented matroid. Specializations include well-
known results such as the number of acyclic orientations of a graph as the evaluation χ(−1) of its
chromatic polynomial, or the number of regions of a real hyperplane arrangement as the evaluation
p(−1) of the Poincaré polynomial of its lattice [15,20,23,24]. Other interesting features of the active
mapping are links established between linear programming and the Tutte polynomial.

The Tutte polynomial of amatroid is a 2-variable polynomialwith non-negative integer coefficients,
first considered by W.T. Tutte for graphs [22], then also for matroids by H.H. Crapo [5]. Up to simple
algebraic transformations, the Tutte polynomial of a matroid is equivalent to its rank-generating
function, i.e. to the 2-variable generating function of cardinality and rank of subsets of elements. The
Tutte polynomial is a fundamental tool for many numerical invariants in graphs and matroids, and
has numerous applications (see for instance [4]).
LetM be a matroid on a linearly ordered set of elements E. By a classical theorem [22,5], we have

t(M; x, y) =
∑

i,j=0,1,...

bi,jxiyj

where bi,j is the number of bases ofM such that i basis elements are the smallest in their fundamental
cocircuit and j non-basis elements are the smallest in their fundamental circuit. The parameters i and
j for a given basis are classically called its internal and external activities.

1 In the present paper, a ‘simplex’ is not a simplicial region, but a basis of hyperplanes, that is an inclusion maximal set of
independent hyperplanes.
2 Regions in real hyperplane arrangements generalize acyclic directed graphs. To generalize all directed graphs, arrangements
of signed real hyperplanes will be considered.
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LetM be an oriented matroid. M. Las Vergnas has shown in [18] that

t(M; x, y) =
∑

i,j=0,1,...

oi,j2−i−jxiyj

where oi,j is the number of subsets A of E such that i elements of E are the smallest in some positive
cocircuit of the reorientation−AM ofM on A and j elements are the smallest in some positive circuit
of −AM . The parameters i and j for a given oriented matroid −AM are called its dual-orientation and
orientation activities. This second formula contains several results of the literature on counting acyclic
orientations in graphs, regions in arrangements of hyperplanes and pseudohyperplanes, vertices of
zonotopes, acyclic reorientations of oriented matroids [3,14–17,20,23,24] (details will be given in the
second paper of the series).
Comparing these two expressions for t(M; x, y), we get the orientation/basis activity relations

oi,j = 2i+jbi,j

for all i, j = 0, 1, . . ..
The question arises of a bijective interpretation of these formulas [18]. The problem is to define a

mapping from reorientations to bases compatible with the orientation/basis activity relations, i.e. an
activity-preserving mapping. More precisely, the desired mapping should associate an (i, j)-active
basis with an (i, j)-active reorientation, in such a way that each basis of M is the image of exactly
2i+j(i, j)-active reorientations.

The active mapping, subject of the present paper and of three others in the series [11,10,12],
provides an answer to the above question. Furthermore, it turns out that the active mapping not
only preserves activities with the right multiplicities, as desired, but actually also preserves active
elements. Moreover it preserves certain fundamental partitions of the ground set associated with
active elements – the active partitions – to be defined in [11]. Reorienting arbitrary parts of the
active partition of an (i, j)-active reorientation defines its activity class, having 2i+j elements. The
active mapping induces an active bijection between activity classes of reorientations and bases, which
depends only on the reorientation class of the ordered oriented matroid. It can be also refined into an
active bijection between reorientations and all subsets of elements. In particular, the active bijection
specializes to a bijection between acyclic reorientations (regions) and subsets of elements containing
no broken circuit [11,9,13]. Other specializations involve for instance acyclic orientations with unique
sink in graphs [8], permutations and signed permutations [9]. As will be shown in Section 4 below and
in further papers of the series, the active mapping behaves simply with respect to matroid duality.
Several constructions of the active mapping will be given in the series of papers. The first

construction reduces the problem to the uniactive internal case, when i = 1 and j = 0. The
uniactive internal case – the bounded case from a geometrical point of view – deals with bounded
regions in real hyperplane arrangements and oriented matroids, with bipolar orientations in the
case of graphs, which are mapped onto uniactive internal bases. The bounded case is the object of
the present paper. Given a uniactive internal basis, a combinatorial algorithm computes a bounded
region having this basis as fully optimal basis. This algorithm is simple, which is not so in the reverse
direction. Then we prove that this construction is bijective. The decomposition of activities, and
its application to construct the general active mapping, is dealt with in the second paper of the
series [11]. In the third paper [10], we will provide a direct construction of the fully optimal basis
of a bounded region by means of (pseudo)linear programming. Another construction of the active
mapping uses deletion/contraction relations (as often in the context of Tutte polynomials). Finally,
universal properties can be used to define the active mapping, particularly in the real case, and in
the slightly more general case of Euclidean matroids. Inductive properties and universality will be
presented in the fourth paper [12].We emphasize that the activemapping is not invariantwith respect
to the ordering, despite the invariance of the number of bases with given activities.
Particular cases of the active mapping have already been published by the authors. These papers,

which can be used to illustrate the general theory of the present series, deal with uniform and
rank-3 oriented matroids [7], with graphs [8], and with supersolvable hyperplane arrangements [9].
Definitions and results of the present paper and of [11,12] are the subject of the thesis of the
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first author [6]. A partial solution to the problem of building a mapping compatible with the
orientation/basis activity relations, different from the present one, is presented in [19] in the case of
graphs, and, more generally, of regular matroids. A short extended abstract covering the whole series
on the general active bijection has been published in [13].

The present paper deals with the uniactive cases o1,0 = 2b1,0 and o0,1 = 2b0,1 of the
orientation/basis activity relations. These two cases being equivalent by matroid duality, it suffices
to consider the uniactive internal case o1,0 = 2b1,0. T. Zaslavsky has proven that the number of
bounded regions of a real hyperplane arrangement is equal to the β-invariant of its matroid [24],
a result generalized to oriented matroids by M. Las Vergnas in [16]. Suppose the set of hyperplanes
is linearly ordered, with the hyperplane at infinity chosen as the smallest element. Then a bounded
region corresponds to a (1, 0)-active reorientation, and β is the number of (1, 0)-active bases. Hence,
up to factor 2 due to negating signs, the Zaslavsky–Las Vergnas result is the (1, 0) orientation/basis
activity relation.
We construct in what follows a natural bijection between bounded regions and uniactive internal

bases. Ourmain tool is the notion of fully optimal basis. Fully optimal bases have a simple combinatorial
definition and several geometrical interpretations, strengthening in particular optimal bases of linear
programming. An optimal basis is associated with one flat of dimension 0 – a vertex – with a
maximality property (solution to a linear program). A fully optimal basis is equivalent to a maximal
flag of flats – one in each dimension – each with a maximality property (unique solution to a
lexicographic multiobjective pseudolinear program, see [10]).
The main results of the present paper are: (1) a bounded region has a unique fully optimal basis,

(2) fully optimal bases provide a bijection between bounded regions and uniactive internal bases, (3)
simple duality properties of fully optimal bases.

2. Preliminaries

We assume an elementary knowledge of matroids and orientedmatroids. Background on oriented
matroids can be found in [1] (see also [2]). For the convenience of the reader, we recall here the main
definitions and technical results needed in what follows.
The content of Section 2.1 suffices for a combinatorial understanding of the paper. However, it

turns out that the activemapping has enlightening geometrical interpretations in terms of topological
oriented matroids (arrangements of signed pseudospheres) and also in terms of pseudolinear
programming. Brief accounts of prerequisites are given in Sections 2.2 and 2.3.

2.1. Matroids and oriented matroids

We use the definition of oriented matroids in terms of circuits, i.e. a collection of signed sets
satisfying certain properties — in particular, the signed elimination property [1, Sect 3.2].
In graphs, circuits resp. cocircuits are edge-sets of inclusion minimal cycles resp. cocycles signed

accordingly with edge directions. Given a cycle resp. cocycle direction, an edge is signed+ if directed
in the given direction, and−otherwise. Bases are edge-sets of spanning forests.
In central arrangements of signed real hyperplanes, defined by linear forms, the oriented matroid

circuits are the sign-vectors of minimal linear dependencies of the linear forms.
Two signed sets C and D are orthogonal if we have (C+ ∩ D+) ∪ (C− ∩ D−) 6= ∅ if and only if

(C+∩D−)∪(C−∩D+) 6= ∅. By forgetting signs in an orientedmatroid, we get its underlying (ordinary)
matroid. Given an oriented matroid M , there is a unique oriented matroid M∗, the dual of M , whose
underlying matroid is the dual of the matroid underlying M , such that the circuits of M and M∗ are
orthogonal [1, Sect. 3.4]. The circuits ofM∗ are called the cocircuits ofM .
The composition of two signed sets C and D is the signed set C ◦ D defined by (C ◦ D)+ = C+ ∪

(D+ \C−) and (C ◦D)− = C−∪(D− \C+). A composition C ◦D is conformal if C andD have equal signs
on their intersection. In an orientedmatroid, a composition of circuits can be rewritten as a conformal
composition of circuits [1, Prop.3.7.2].
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Let B be a basis of a matroid M with rank r = r(M). For e 6∈ B, the fundamental circuit of e with
respect to B, denoted by CM(B; e) = C(B; e), is the unique circuit contained in B ∪ {e}. For b ∈ B,
the fundamental cocircuit of b with respect to B, denoted by C∗M(B; b) = C∗(B; b), is the unique
cocircuit contained in (E \ B) ∪ {b}. Alternately, C∗(B; b) is the complement of the hyperplane –
flat of rank r(M) − 1 – generated by B \ {b}. By orthogonality, we have b ∈ C(B; e) if and only if
e ∈ C∗(B; b). In an oriented matroid, there are two opposite signed circuits resp. cocircuits with the
same underlying circuit resp. cocircuit. We denote by C(B; e) resp. C∗(B; b) the signed fundamental
circuit resp. cocircuit such that e resp. b is signed+. By (oriented) matroid duality, if B is a basis ofM ,
then E \ B is a basis ofM∗, and for b ∈ Bwe have C∗M(B; b) = CM∗(E \ B; b).
LetM be an oriented matroid on {e1, e2, . . . , en}. We define the (fundamental) tableau of B inM as

then×nmatrixwith coefficients in {+,−, 0}, whose i-th column is the sign-vector ofC∗(B; ei) if ei ∈ B
and i-th row is the sign-vector of −C(B; ei) if ei 6∈ B, and with 0 everywhere else. The consistency of
this definition follows from the orthogonality property from oriented matroid duality. This definition
of a tableau in an oriented matroid differs slightly from that in [1, Chap.10]. The present definition is
more convenient for our purpose. Clearly, the fundamental tableau of E \ B in M∗ is the opposite of
the transpose of the complete fundamental tableau of B inM .
A linear ordering of a set E is given by a indexation of its elements, E = {e1, e2, . . . , en}<. A

matroid is said to be ordered if its set of elements is linearly ordered. Theminimal basis of an ordered
matroid M on E is the unique basis Bmin = {f0, f1, . . . , fr−1}< minimal for the lexicographic ordering
of r-subsets induced by the linear ordering of E. The minimal basis is easily built by means of the
Greedy Algorithm. For 0 ≤ i ≤ r − 1, fi is the smallest element not belonging to the closure of
{f0, f1, . . . , fi−1}. In particular, f0 is the smallest non-loop element of E, and f1 is the smallest non-loop
element, different from f0 and not parallel to it. As easily shown, any b ∈ Bmin is the smallest in its
fundamental cocircuit C∗(Bmin; b), and, conversely, the smallest element of any cocircuit belongs to
the minimal basis. Equivalently, the minimal basis is the set of all smallest elements of cocircuits of
the matroid.
General activities will not be used in this paper. It suffices to define here a (1, 0)-active basis, or

uniactive internal basis. A basis B ofM is internal, or, equivalently, has external activity 0, if no element
e ∈ E \ B is the smallest in its fundamental circuit C(B; e). Clearly, the minimal basis Bmin is internal.
An internal basis is uniactive if no basis element except e1 is the smallest in its fundamental cocircuit.
The property for a basis to be uniactive internal can easily be read off from its (unsigned) tableau.
A (1, 0) orientation active oriented matroid, or bounded acyclic oriented matroid, is defined

similarly. An oriented matroid is acyclic, or has orientation activity 0, if it contains no positive circuit.
By the Farkás Lemma for oriented matroids [1, Cor. 3.4.6], every element belongs either to a positive
circuit or to a positive cocircuit. Equivalently, an oriented matroid is acyclic if every element belongs
to some positive cocircuit. An acyclic oriented matroid is bounded (with respect to e1), or has dual-
orientation activity 1, if all its positive cocircuits contain e1. In the case of graphs (see [8]), an acyclic
directed graph is bounded with respect to e1 if and only if it is bipolar with respect to e1, that is the
extremities of e1 are the unique source and unique sink of the directed graph.
The reorientation of an oriented matroid M on a subset of elements A ⊆ E, denoted by −AM , is a

resigning of the circuits ofM defined by reversing signs of elements in A [1, Sect. 3.1]. We will usually
make a slight abuse of language by identifying a reorientation −AM of M with its defining subset A.
For instance, we will say that a reorientation A ⊆ E is acyclic if the oriented matroid−AM is acyclic.
Hence, there are always 2|E| reorientations ofM .

2.2. Geometrical representation

Oriented matroids can be topologically represented by arrangements of signed pseudospheres. In
examples, wewill use the equivalent, smaller by roughly a half, representation by spherical diagrams.
Let M be an oriented matroid (without loops) of rank r = d + 1 with elements e1, e2, . . . , en.

In an arrangement of signed pseudospheres in Sd, a signed pseudosphere is an image e by a
homeomorphism of Sd of the unit sphere Sd−1, with signs +,− assigned to the two connected
components of Sd \ e. In particular, a central hyperplane arrangement is transformed into a
(pseudo)sphere arrangement by taking intersections with Sd. Given an oriented matroid of rank
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r = d + 1, there is a arrangement of (d − 1)-dimensional signed pseudospheres in the sphere Sd
such that the faces they determine are in a canonical 1–1 correspondence with the signed covectors
of M . Here, we will only use rank-3 examples, equivalent to well-known pseudoline arrangements.
For a background on general pseudosphere arrangements, see [1, def. 5.1.3]. It suffices to know that
thementioned 1–1 correspondence is obtained by associating with every point x ∈ Sd the sign-vector
σx ∈ {+,−, 0}n whose i-th component is+ resp.−, 0 if x ∈ e+i resp. x ∈ e

−

i , x ∈ ei.
We observe that up to a homeomorphism of Sd, we may suppose that e1 = Sd−1 and e1 ∪ e+1 = B

d.
Restricting the arrangement to Bd, we obtain a spherical diagram ofM . We assume that no element of
M is parallel to e1. Then e2, . . . , en constitute a pseudohyperplane arrangement restricted to the ball
Bd, having all its vertices in Bd. The sphere e1 is called the hyperplane at infinity of the diagram. A region
is bounded if has no vertex in the hyperplane at infinity e1. We also say e1-bounded for short. Points
not on e1 are at finite distance. The following properties hold.

• Sign-vectors of points in Bd \
⋃
1≤i≤n ei establish a bijection between regions of the diagram,

i.e. connected components of Bd \
⋃
1≤i≤n ei, and maximal covectors ofM with first component+.

• The mapping x 7→ σ−x is a bijection from regions to acyclic reorientations of M contained in
{e2, . . . , en}. In particular, the oriented matroidM is acyclic if and only if all signs of some region,
necessarily unique, are+. This region is called the fundamental region.
• A dimension-0 intersection of ei’s consists of either 1 point in e+1 or 2 points in e1. These points –
called vertices of the diagram – correspond to cocircuits ofM . Spherical diagrams are different from
projective representations of oriented matroids: opposite points on e1 = Sd are not identified. A
cocircuit not containing e1 is associated with two vertices at infinity, one for each opposite signed
cocircuit. A cocircuit containing e1 is associated with a unique vertex at finite distance.
• A dimension-1 intersection of ei’s is either a pseudocircle contained in e1 or a pseudosegment
joining two opposite vertices of e1 with interior not in e1. In both cases, we call it improperly a
pseudoline of the diagram. Two vertices adjacent on a pseudoline are conformal: their common
non-zero signs are equal. A part of a pseudoline defined by two adjacent vertices is called an edge
of the diagram.
• Let C , D be two covectors, corresponding respectively to faces v andw. Then the composition C ◦D
corresponds to the face of the flat spanned by v and w, which contains v and is in the side of w
of all pseudohyperplanes containing v. In particular, if C and D are two conformal cocircuits, then
C ◦ D = D ◦ C corresponds to the edge joining the corresponding vertices.

Arrangements of affine real hyperplanes, with an added hyperplane at infinity, constitute the
real case of spherical diagrams. For d = 2 spherical diagrams of oriented matroids are circular
diagrams of pseudoline arrangements (see [1, Chap. 6]). These two examples provide an intuition for
the geometrical interpretation of the constructions in this paper, as well as for the extension of linear
programming to oriented matroids, or pseudolinear programming (see [1, Chap. 10]).

An example of circular diagram is shown in Fig. 1. The gray region is the fundamental region,
corresponding to the positivemaximal covector. It is 1-bounded. The associated cocircuit is shown for
each vertex of the diagram. For instance, let us consider the cocircuit C∗, associated with the vertex v.
Since v is on 127, these elements do not occur in C∗. On the other hand, v is not on 3456, hence these
elements occur in C∗. The vertex v and the fundamental region are on the same side of pseudoline 3,
hence 3 is positive in C∗, we simply write 3. The vertex v and the fundamental region are separated
by pseudoline 4, hence 4 is negative in C∗, we write 4̄. Continuing, we eventually get C∗ = 34̄5̄6.

2.3. Pseudolinear programming

A linear program in Rd is defined by a polytopal region — the feasible region, intersection of closed
half-spaces defined by affine hyperplanes — the program hyperplanes, and by a linear form on Rd — the
objective function. Basic property: the objective function always attains a maximum on a non-empty
and bounded feasible region.
For a combinatorial version of this theorem, let us represent the objective function by directing in

its increasing direction all edges defined by the hyperplanes of the program not parallel to it. Then a
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Fig. 1. Cocircuits in a circular diagram of pseudolines.

key observation is that, in the real case, a vertex v of the feasible region is a maximum of the objective
function if and only if no edge of the feasible region incident to v is outgoing from v.

In the paper, an orientedmatroid program (M; p, f ), or pseudolinear program, is defined by an acyclic
orientedmatroid on E = {e1, e2, . . .}with hyperplane at infinity p = e1, objective function f ∈ E, and
such that the feasible region is the fundamental region. In particular, the feasible region is always on
the positive side of f . No loss in generality results from these conventions, slightly different from [1].
We construct the program graph by directing the edges of the feasible region not parallel3 to the

objective function f in the direction going from the negative side of f towards its positive side. This
can be done combinatorially, i.e. by means of sign-vectors. Note that in the oriented matroid case, the
program graph may contain directed cycles (this cannot happen in the real case). Nevertheless, the
main theorem remains valid.

Theorem 2.1 ([1, Th. 10.1.13]). The graph of a pseudolinear program on a bounded feasible region
contains at least one vertex with no outgoing edge.

Any vertex of the program graph with no outgoing directed edge is a solution to the pseudolinear
program. We say here that such a vertex is an optimal vertex. In the example of Fig. 2, there are two
optimal vertices.

The main definition of the present paper, to be introduced in the next section, is a refinement of
the classical notion of optimal basis, used in the Simplex Criterion to characterize optimal vertices.
We recall that a basis B of a (pseudo)linear program of dimension d, i.e. r = d + 1 independent

hyperplanes, is said to be optimal if (i) p ∈ B, (ii) f 6∈ B, (iii) the fundamental cocircuit C∗(B; p) is
positive, (iv) the fundamental circuit C(B; f ) has p as its unique negative element. This definition is
the acyclic case of the definition in [1, Cor. 10.2.8].

3 Two pseudohyperplanes, or a pseudohyperplane and a pseudoline, are parallel if their intersection is contained in the
hyperplane at infinity.
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Fig. 2. Optimal bases.

Proposition 2.2 (The Simplex Criterion [1, Cor. 10.2.8]). A vertex v of the feasible region is an optimal
vertex of a (pseudo)linear program if and only if there is an optimal basis {b1 = p, b2, . . . , br} such that
v = b2 ∩ b3 ∩ · · · ∩ br .

Properties of bases in oriented matroid programming are conveniently described by their
fundamental tableaux, analogue to the tableaux in linear programming.
We say that B is supported by the vertex v = b2 ∩ b3 ∩ · · · ∩ br . The condition C∗(B; p) positive

expresses that v is a vertex of the feasible region. Geometrically, the condition C−(B; f ) = {p}
expresses that p does not meet the interior of the region f + ∩ b+2 ∩ b

+

3 ∩ · · · ∩ b
+
n . In the real case,

the condition C−(B; f ) = {p}means that the cone b+2 ∩ b
+

3 ∩ · · · ∩ b
+
n – whose closure contains the

feasible region – is in the negative closed half-space defined by the hyperplane parallel to f through
v, implying that v is optimal.

Optimal bases are generally not unique.
In the example of Fig. 2 there are 4 bases supported by optimal vertices, namely 137 145 147 157.

The 3 bases 137 147 157 are optimal. The basis 145, associated with the optimal vertex e4 ∩ e5, is not
optimal. The circled sign in row 2 column 5 of its tableau should be a−, however it is actually+, since
the vertex e1 ∩ e4 ∩ e+5 is in e

+

2 . The circled signs in tableaux of bases 137 and 157 will be explained in
the next section. Another example is provided in Fig. 4.

3. Fully optimal bases

We introduce in this section the main new notion of the paper, namely that of fully optimal basis
in a bounded acyclic ordered oriented matroid. This definition will be extended to general oriented
matroids in [11], by means of duality and decompositions into bounded acyclic minors.

Definition 3.1. LetM be an oriented matroid on a linearly ordered set E = {e1, e2, . . .}<.
We say that a basis B ofM is fully optimal if and only if

(i) for every e ∈ E \ B, the signs in C(B; e) of e and min C(B; e) are opposite, and
(ii) for every b ∈ B \ e1, the signs in C∗(B; b) of b and min C∗(B; b) are opposite.

Equivalently, B is fully optimal if and only if

(i′) the first non-zero sign of each row of its tableau inM is+, and
(ii′) the first non-zero sign of each column except the first one is−.
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Fig. 3. A fully optimal basis.

The properties (i) and (ii), or (i′) and (ii′), immediately imply that f0 = e1 ∈ B and that f1 6∈ B,
where f1 is the first element ofM not parallel to f0 = e1.

A fully optimal basis B = {b1 = e1, b2, . . . , br}< is in particular an optimal basis of the program
(M; e1, f1) defined by the hyperplane at infinity p = e1, the objective function f = f1, and with the
fundamental region ofM as feasible region. By the Simplex Criterion, the vertex v = b2∩b3∩· · ·∩ br
is an optimal vertex for this program.

For example, comparing Figs. 2 and 3, the basis 147 is both optimal and fully optimal, whereas
bases 137 and 157 are optimal but not fully optimal, as shown by the circled signs in their tableaux.

We note some simple consequences of Definition 3.1.

Proposition 3.2. Let M be an ordered oriented matroid on {e1, e2, . . .}<.
(i) If M has a fully optimal basis then it is acyclic, and its fundamental region is bounded with respect to
the hyperplane at infinity e1.

(ii) A fully optimal basis is internal and uniactive.

Proof. Let B be a fully optimal basis ofM .
(i) It follows immediately from the row property in Definition 3.1 that the composition C∗M(B; e1)◦

C∗M(B; e2) ◦ · · · ◦ C
∗

M(B; er) is a positive covector supported by the entire set of elements E. HenceM is
acyclic.
We prove that the fundamental region is bounded. LetD be a positive cocircuit ofM . ThenD\B 6= ∅,

otherwise the basis B is contained in the hyperplane E \ D. Let e ∈ D \ B. By the column property in
Definition 3.1, if e1 6∈ D, then D has + sign and CM(B; e)− sign on their non-empty intersection,
contradicting the orthogonality property in oriented matroids. Hence e1 ∈ D, thus the fundamental
region has no vertex at infinity, i.e. is bounded.
(ii) If an element e not in B is the smallest in its fundamental circuit, then the smallest element of

the row e is −, contradicting the row condition of Definition 4.1. Hence B is internal. If an element
e ∈ B is the smallest in its fundamental cocircuit, then the smallest element of the column e is +.
Therefore, by the column condition of Definition 3.1, we have e = e1. It follows that B is uniactive.

�

In Fig. 2, the basis 137 is not uniactive, and 157 is not internal, whereas a fully optimal basis is
uniactive internal by Proposition 3.2. Another example, with uniactive internal bases being optimal
but not fully optimal is given by Fig. 4.
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Fig. 4. The tableaux of 4 bases with respect to the gray region.

Proposition 3.3. Let M be an oriented matroid on a linearly ordered set E = {e1, e2, . . . , en}<, and
B = {b1, b2, . . . , br}< be a uniactive internal basis. Set E \ B = {c1, c2, . . . , cn−r}<.
Then B is fully optimal if and only if

(i) [Adjacency] the covector C∗M(B; b1) ◦ C
∗

M(B; b2) ◦ · · · ◦ C
∗

M(B; br) is positive, and,
(ii) [Dual-Adjacency] the vector CM(B; c1) ◦ CM(B; c2) ◦ · · · ◦ CM(B; cn−r) has e1 = b1 as its unique
negative element. �

The conditions internal or uniactive cannot be removed. In the graph on 3 vertices a, b, c with
edges 1 = ab 2 = cb 3 = ac 4 = ac the basis 12 is internal, not uniactive, the basis 14 is not internal,
hence none is fully optimal. However both satisfy the adjacency and dual-adjacency properties.

Proposition 3.3 has a simple geometrical interpretation. As recalled in Section 2.2, covectors are
sign-vectors of points of a topological representation, i.e. are in 1–1 correspondence with the faces of
an arrangement of signed pseudospheres representing the oriented matroid. If the point is a vertex of
the arrangement – a zero-dimensional flat – then the covector is a cocircuit, and conversely. Otherwise
the point is an interior point of a unique face of dimension ≥1 of the arrangement, associated with
the corresponding covector. In a spherical diagram, we are concerned only with sign-vectors where
e1 is non-negative.
Given a basis B = {b1, b2, . . . , br}<, the cocircuit C∗M(B; b1) is associated with the vertex v =

b2 ∩ b3 ∩ · · · ∩ br . The cocircuits C∗M(B; b1), C
∗

M(B; b2), . . . , C
∗

M(B; bi) are vertices of the simplex with
facets supported by b1, b2, . . . , br representing B. There are 2r−1 regions in a pseudosphere arrangement
representingM associated with covectors of type C∗M(B; b1) ◦±C

∗

M(B; b2) ◦ · · · ◦±C
∗

M(B; br). They are
on the positive side of b1 and appear in the spherical diagram of M . For such a region, and for i ≥ 1,
let wi be the (i − 1)-dimensional face associated with the i-th covector C∗M(B; b1) ◦ ±C

∗

M(B; b2) ◦
· · · ◦ ±C∗M(B; bi). We have w1 = v, then wi is supported by bi+1 ∩ · · · ∩ br , i = 1...r − 1, and wr is
the considered region among the above 2r−1 regions. The sequence w1, w2, . . . , wr is a sequence of
nested faces – or flag – of this region, which is maximal in the sense that it contains one face in each
dimension. We say that regions of this type are adjacent to B.
Now assume that B is a fully optimal basis ofM . Then, by the adjacency property of Proposition 3.3,

the fundamental region of M corresponds to the positive covector C∗M(B; b1) ◦ C
∗

M(B; b2) ◦ · · · ◦
C∗M(B; br) and is adjacent to B. Moreover, by the dual-adjacency property of Proposition 3.3, −e1M

∗

has a positive covector, corresponding to a region of a spherical diagram representing M∗, adjacent
to the basis E \ B of M∗. So, B is fully optimal in M if and only if both M corresponds to one of the
2r−1 regions adjacent to B and−e1M

∗ corresponds to one of the 2n−r−1 regions adjacent to E \ B. This
geometric property, involving a representation ofM and of its dual, characterizes fully optimal bases.
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See also Proposition 4.2, where we shall see that this property for a uniactive internal basis
determines one and only one bounded region. See also Section 5 for further interpretation of this
duality property.

A complete interpretation of fully optimal bases in terms of linear programming will be given
in [10]. As mentioned before, a fully optimal basis B = {b1, b2, . . . , br}< is an optimal basis of the
program (M; p = e1, f = f1), and the vertex v = b2∩b3∩· · ·∩br is an optimal vertex for this program.
However, the vertex v satisfies stronger extremal properties. The vertex v is the unique solution to
a lexicographic multiobjective pseudolinear program, lexicographic multiprogram for short, defined
by the minimal basis Bmin. Furthermore, not only v, but also each of the flats bi ∩ bi+1 ∩ · · · ∩ br
can be characterized by certain extremal properties, expressible in terms of linear programming.
The face wi is the unique solution to a lexicographic multiprogram among all (i − 1)-dimensional
faces of the fundamental region containing wi−1 (this condition is void for i = 1). The reformulation
of Definition 3.1 given by Proposition 3.3 can be considered as a strengthening of the Simplex
Criterion.

Fig. 4 shows the tableaux of 4 internal uniactive baseswith respect to the bounded region R, shaded
in gray. The basis 148 is a fully optimal basis of R. The bases 145, 146, and 147 are not fully optimal as
the circled signs in their tableaux should be opposite. The 4 bases are optimal bases of the program
(M; 1, 2) with fundamental region R. If 8 resp. 6, 58 is reoriented, then the tableau of 145 resp. 146,
148 becomes the tableau of a fully optimal basis in the region R′ = −8R resp. −6R, −58R. For each
region, we have represented the nested faces v = w1 ⊂ w2 ⊂ w3 = R′ corresponding to the
covectors C∗M(B; b1)◦C

∗

M(B; b2)◦ · · · ◦C
∗

M(B; bi) for i = 1, 2, 3 signed with respect to the fundamental
region R′.

We end this section by two other reformulations of Definition 3.1.

Proposition 3.4. Let M be an oriented matroid on a linearly ordered set E = {e1, e2, . . . , en}<, and B =
{b1, b2, . . . , br}< be a basis of M. Set E \ B = {c1, c2, . . . , cn−r}<. The following properties (i)–(iii) are
equivalent.
(i) B is fully optimal.
(ii) B is internal, C∗M(B; b1) is positive, and for 2 ≤ i ≤ r the smallest element of C

∗

M(B; bi) is negative
and C∗M(B; bi) \

⋃
1≤j<i C

∗

M(B; bj) is positive.
(iii) B is uniactive, for 1 ≤ i ≤ n − r the smallest element of CM(B; ci) is negative and CM(B; ci) \⋃

1≤j<i CM(B; cj) is positive. �

The example given for Proposition 3.3 shows that the condition internal resp. uniactive cannot be
removed from (i) resp. (ii).

4. The active bijection

In this section, we establish our main result: a bounded region admits exactly one fully optimal
basis, providing a bijection between bounded regions and uniactive internal bases. Our proof is
indirect. First, given a uniactive internal basis, we construct bymeans of a simple algorithm the unique
bounded region for which this basis if fully optimal. Then we prove that a bounded region admits at
most one fully optimal basis. It follows that the mapping from uniactive internal bases to bounded
regions on the positive side of infinity given by the algorithm is an injection. As well-known, the
number of bounded regions on one side of infinity is equal to the number of uniactive internal bases
[24,16], hence this injection is actually a bijection, whose converse is called the active mapping or
active bijection. The existence and unicity follow.
A direct construction of the fully optimal basis of a given bounded region, by means of

(pseudo)linear programming, will be the object of the forthcoming paper [10]. A simple construction
of the fully optimal basis by deletion/contraction will be also given in the forthcoming paper [12].

A more complete statement of the following lemma – with converse and dual – is given in [8]
Prop. 3.2 for graphs. It generalizes to matroids without change. We give a proof of Lemma 4.1 for
completeness.
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Lemma 4.1. Let M be a matroid on a linearly ordered set E, and B = {b1, b2, . . . , br}< be an internal
basis of M.
Then bi is the smallest element of E \

⋃
1≤j<i C

∗(B; bj) for i = 1, 2, . . . , r.

Proof. Let e = min
(
E \

⋃
1≤j<i C

∗(B; bj)
)
. Suppose e < bi. We have B ∩

(
E \

⋃
1≤j<i C

∗(B; bj)
)
⊆

{bi, bi+1, . . . , br}, hence e 6∈ B. Set C = C(B; e). For 1 ≤ j < i if bj ∈ C , we have e ∈ C∗(B; bj), hence
C ∩ {b1, . . . , bi−1} = ∅. It follows that C ∩ B ⊆ {bi, . . . , br}, hence e is the smallest in C , contradicting
the hypothesis that B is internal. Therefore e ≥ bi, and we have e = bi. �

Proposition 4.2. Let M be an oriented matroid on a linearly ordered set E with smallest element e1, and
B be a uniactive internal basis of M.
There exists a unique reorientation A ⊆ E \ {e1} such that B is fully optimal in−AM. The subset A can

be constructed by either of the following three algorithms.
Moreover, the (bounded acyclic) oriented matroid−AM is invariant under reorientation of M. In other

words, there is a uniquely defined region of the topological representation of M associated with B.

Algorithm 1. Let B = {b1 = e1, b2, . . . , br}<.
Set A1 = (C∗(B; b1))−.
For 2 ≤ i ≤ r , set

Ai = Ai−1 +

((
C∗(B; bi)

)εi
\

⋃
1≤j<i

C∗(B; bj)

)
where εi is the sign of a = min C∗(B; bi) if a 6∈ Ai−1, minus this sign otherwise.
Then A = Ar .

Algorithm 2. Let E \ B = {c1 = e2, c2, . . . , cn−r}<.
Set A1 = (C(B; c1) \ {e1})ε1 , where ε1 is the sign of the smallest element e1 of C(B; c1).
For 2 ≤ i ≤ n− r , set

Ai = Ai−1 +

(
(C(B; ci))εi \

⋃
1≤j<i

C(B; cj)

)
where εi is the sign of a = min C(B; ci) if a 6∈ Ai−1, minus this sign otherwise.
Then A = An−r .

Algorithm 3. Let E = {e1, e2, . . . , en}<.
Set A1 = ∅.
For 2 ≤ i ≤ n
– if ei ∈ B, let a = min C∗(B; ei), then, if a ∈ C∗(B; ei)+ \ Ai−1 or a ∈ C∗(B; ei)− ∩ Ai−1, set

Ai = Ai−1 + ei,
– if ei 6∈ B, let a = min C(B; ei), then, if a ∈ C(B; ei)+\Ai−1 or a ∈ C(B; ei)−∩Ai−1, set Ai = Ai−1+ei.
Then A = An.

Proof. We prove the validity of Algorithm 1. Clearly, C∗(B; b1) is positive in −A1M , hence in −AM
since (A \ A1) ∩ C∗(B; b1) = ∅. Let 2 ≤ i ≤ r . Since B is uniactive, the smallest element ai of C∗(B; bi)
is< bi, hence is in E \B. Necessarily ai is in

⋃
1≤j<i C

∗(B; bj), otherwise C(B; ai)would not contain any
bj with j < i, hence ai would be the smallest in C(B; ai) contradicting B internal. Hence all elements of
C∗
−AiM

(B; bi)\
⋃
1≤j<i C

∗(B; bj)have the same sign, opposite to the sign of ai. The sameproperty holds in
−AM since Ai ⊆

⋃
1≤j≤i C

∗(B; bj), and by definition of the Ai’s we have (A\Ai)∩
⋃
1≤j≤i C

∗(B; bj) = ∅.
Thus B satisfies (ii) of Lemma 5.1 in−AM , hence is fully optimal.
This proof shows that if A is such that B is fully optimal in −AM , then necessarily we have

A ∩ (C∗(B; bi)) \
⋃
1≤j<i C

∗(B; bj) = Ai \ Ai−1 for i = 1, 2, . . . , r . Therefore A is unique.
The validity of Algorithm 2 can be proved similarly, by matroid duality. Algorithm 3 is a

reformulation of Algorithms 1 and 2.
The invariance of −AM follows from the observation that, starting from M ′ = −SM , we get

A′ = A∆S. Hence−A′M ′ = −A∆S(−SM) = −(A∆S)∆SM = −AM . �
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Fig. 5. Algorithm 1 for basis 147.

We point out that the algorithms computing the reorientation A in Proposition 4.2 depend only
on the tableau of B. Algorithm 1 consists in reorienting some elements of successive columns, so that
all elements that have not been considered yet are signed + in the same column of the final tableau
while the smallest element of this column is signed −. Similarly and dually, Algorithm 2 consists in
considering successive rows,whereas Algorithm3 consists in reorienting directly successive elements
if necessary.

Geometrically, the region given by the final reorientation does not depend on the initial
fundamental region. The first algorithm in Proposition 4.2 consists in finding the region associated
with the basis by fixing step by step facesw1 ⊂ w2 ⊂ · · · ⊂ wr of this region. It amounts to deleting
at each step half of the 2r regions adjacent to B on both sides of e1, cf. Proposition 3.3. At the first step,
the orientations of the elements of C∗(B; b1) are fixed, so that the final region is on the positive side
of these elements. Then at each step, one of the two vertices representing the cocircuits±C∗(B; bi) is
chosen to be on the side of bi containing the final region. Namely the vertex on the negative side of
the pseudohyperplanemin C∗(B; bi), whose orientation has been fixed at a previous step.

The 4 diagrams of Fig. 5 show the 4 reorientations−AiM for i = 0, 1, 2, 3, with A0 = ∅, associated
with the 3 steps of Algorithm 1 in rank r = 3. The fundamental region in the first diagram is shaded
in light gray. The regions shaded in gray in the first picture are the 2r = 8 regions associated with the
maximal covectors±C∗(B; b1) ◦ ±C∗(B; b2) ◦ ± . . . ◦ ±C∗(B; bn). Only 4 are shown in Fig. 5, those in
e+1 . Each step of the algorithm divides the number of gray regions by 2.
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Fig. 6. Possible figure and impossible figure (The Crescent Lemma).

Proposition 4.3. An ordered oriented matroid admits at most one fully optimal basis.

The key to the proof of Proposition 4.3 is the following lemma.

Lemma 4.4 (The Crescent Lemma). Let M be an oriented matroid on a set E, and B, B′ be two distinct
bases of M. Let a ∈ E \ (B ∪ B′) and b ∈ B ∩ B′. Set D = C∗(B; b), D′ = C∗(B′; b), C = C(B; a), and
C ′ = C(B′; a). Suppose that

(i) B′ ∩ D ⊆ D+,
(ii) B ∩ D′ ⊆ D′+,
(iii) (B′ ∩ D ∩ C ′)− b+ a ⊆ C ′+, and
(iv) (B ∩ D′ ∩ C)− b+ a ⊆ C+.

Then (B ∩ D′ ∩ C)− b = ∅ and (B′ ∩ D ∩ C ′)− b = ∅.

The Crescent Lemma says in particular that, in a topological oriented matroid, if we have two
simplices (half-crescents) B, B′ with a common pseudohyperplane b such that the vertex not in b of
each simplex lies inside the other one, then no pseudohyperplane a can meet the interiors of both
simplices on the same side of bwithout crossing b at the frontier of the simplices. See Fig. 6. Precisely,
this figure shows two bases B = {b, b1, b2} and B′ = {b, b′1, b

′

2}, satisfying the above conditions. The
vertex b1 ∩ b2, resp. b′1 ∩ b

′

2, corresponds to C
∗(B; b) = D, resp. C∗(B′; b) = D′. Hypotheses (i) and

(ii) of the lemma mean that the fundamental region corresponding to M is the region not touching
b between these two vertices. Thereby, hypotheses (iii) and (iv) assume that an element a 6∈ B ∪ B′
cuts both simplices defined by B with apex D, and B′ with apex D′ (but does not cut the fundamental
region, nor the faces of the simplices contained in b). The conclusion of the lemma states that, under
these conditions, amust be parallel to b, that is equal to b on the first figure. In otherwords, the second
figure is impossible as a figure extracted from a pseudosphere arrangement.

Proof. Let D′′ be a cocircuit obtained by elimination of b from−D and D′. We have B∩D = {b}, hence
B ∩ (D ∪ D′) ⊆ (D′ \ D) + b. Therefore B ∩ D′′ ⊆ D′ \ D. Since B ∩ D′ ⊆ D′+ by (ii), it follows that
B ∪ D′′ ⊆ D′′+. Similarly we have B′ ∩ D′′ ⊆ D′′−.
Since C − a ⊆ B, we have (C − a) ∩ D′′ ⊆ B ∩ D′′ ⊆ D′′+. Similarly (C ′ − a) ∩ D′′ ⊆ D′′−.
Suppose a ∈ D′′. Then by (iv) C ∩ D′′ ⊂ (C − b) ∩ D′ + a ⊂ C−. Hence, by orthogonality,

(C − a) ∩ D′′ ⊆ D′′+ implies a ∈ D′′−. Similarly, using C ′ and (iii), we get a ∈ D′′+. We have a
contradiction, therefore a 6∈ D′′. It follows, by orthogonality again, that C ∩ D′′ = ∅ and C ′ ∩ D′′ = ∅.
For all e ∈ D∆D′, let D′′e be a cocircuit containing e obtained by elimination of b from −D and D

′.
We have B∩ D′ − b ⊆ D′ \ D and B′ ∩ D− b ⊆ D \ D′. Hence (B∩ D′)∪ (B′ ∩ D)− b ⊆

⋃
e∈D∆D′ D

′′
e . It

follows that C , contained in the complementary of
⋃
e∈D4D′ D

′′
e , does not meet B ∩ D

′
− b.

Similarly C ′ does not meet B′ ∩ D− b. �
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Proof of Proposition 4.3. Let M be an oriented matroid on a linearly ordered set E. Suppose for
a contradiction that there are two distinct fully optimal bases B = {b1, b2, . . . , br}< and B′ =
{b′1, b

′

2, . . . , b
′
r}<.

By Lemma 4.1 there is a smallest integer i ≥ 1 such that C∗(B; bi) 6= C∗(B′; b′i). We have bj = b
′

j
for 1 ≤ j ≤ i. Set b = bi = b′i , D = C

∗(B; b) and D′ = C∗(B′; b).
We have B ∩ D′ − b 6= ∅. Otherwise B ∩ D′ = {b}, therefore D′ = C∗(B; b), and thus D = D′,

contradicting D 6= D′. Similarly B′ ∩ D− b 6= ∅.

(0) Let a be the smallest element of( ⋃
e∈B∩D′−b

C∗(B; e)

)
∪

( ⋃
e∈B′∩D−b

C∗(B′; e)

)
.

Set C = C(B; a), C ′ = C(B′; a).
(1) a 6∈ B ∪ B′

By symmetry, we may suppose notation such that a is the smallest in C∗(B; e) for some
e ∈ B ∩ D′ − b.
(1.1) a 6∈ B

Otherwise we have a = e since a ∈ B ∩ C∗(B; e) = {e}. Hence by (0) a is the
smallest in C∗(B; a), implying a = e1 since B is uniactive, by Proposition 4.2. We have
a = e = e1 ∈ B′ ∩ D′ = {b}, hence a = b, which contradicts a = e ∈ B ∩ D′ − b.

(1.2) a 6∈ B′
For a contradiction, suppose a ∈ B′

(1.2.1) a 6∈ D
Otherwise, since a 6∈ B and b ∈ B, we have a 6= b, hence a ∈ B′∩D−b. Therefore,

by (0) we have a smallest in C∗(B′; a), and again a = e1 since B′ is uniactive. But
e1 ∈ B, contradicting (1.1).

(1.2.2) a > b
Otherwise, since a ∈ B′, we have a ∈ {b1, b2, . . . , bi} ⊆ B contradicting (1.1).

(1.2.3) a 6∈ D′
Otherwise we have a ∈ B′ ∩ D′ = {b}, hence a = b contradicting (1.2.2).

(1.2.4) C ∩ D′ ⊆ C+ ∩ D′+
Let x ∈ C ∩ D′. We have x 6= a by (1.2.3), hence x ∈ C − a ⊆ B. We have x 6= b,

otherwise b ∈ C , hence a ∈ D, contradicting (1.2.1). Hence x ∈ (C − a) ∩ D′ − b ⊆
B ∩ D′ − b. Therefore by (0) a is the smallest element of C∗(B; x). Since x > a, we
have x > e1. It follows from (ii) of Proposition 3.3 that a ∈ (C∗(B; x))−. Hence by
orthogonality x ∈ C+.
We have x ∈ B and x > a > b, hence x 6∈ C∗(B; bj) = C∗(B′; b′j) for 1 ≤ j < i.

Therefore x ∈ D′ \
⋃
1≤j<i C

∗(B′; bj) ⊆ D′+ by (ii) of Proposition 4.3.
(1.2.5) C ∩ D′ 6= ∅

We have a ∈ D = C∗(B; e), hence e ∈ C = C(B; a). Since e ∈ D′, we have
e ∈ C ∩ D′.
(1.2.4) and (1.2.5) contradict the orthogonality property, hence (1.2) holds.

(2) B′ ∩ D ⊆ D+
Let b′k ∈ D, k 6= i. Suppose b

′

k ∈ C
∗(B; bj) for some 1 ≤ j < i. We have b′k ∈ C

∗(B′; b′j) =
C∗(B; bj), hence b′k = b

′

j = bj. But bj ∈ D = C
∗(B; bi) implies j = i, contradicting k 6= i. It follows

that b′k ∈ D \
⋃
1≤j<i C

∗(B; bj) ⊆ D+ by (ii) of Proposition 4.3.
(3) B ∩ D′ ⊆ D′+

Same proof as that of (2).
(4) (B′ ∩ D ∩ C ′)− b+ a ⊆ C ′+

We have C ′ = C(B′; a), hence a ∈ C ′+. Let b′j ∈ D ∩ C
′
− b. Since b′j ∈ C(B

′
; a), we have

a ∈ C∗(B′; b′j), hence a is the smallest in C
∗(B′; b′j). By (ii) of Proposition 4.3 it follows that

a ∈
(
C∗(B′; b′j)

)−, hence by orthogonality b′j ∈ (C(B′; a))+ = C ′+.
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Fig. 7. The active bijection (bounded case).

(5) (B′ ∩ D ∩ C)− b ∪ a ⊆ C+
Same proof as that of (4).

By (1)–(5) the hypothesis of the Crescent Lemma is satisfied by B, B′ and a, b with the same
notation. Hence B ∩ D′ ∩ C − b = ∅ and B′ ∩ D ∩ C ′ − b = ∅. However we have a smallest in
C∗(B; e) for some e ∈ B ∩ D′ − b, or a smallest in C∗(B′; e) for some e ∈ B′ ∩ D − b. The first case
implies e ∈ C hence e ∈ B ∩ D′ ∩ C − b, and the second implies e ∈ B′ ∩ D ∩ C ′ − b. We get a final
contradiction, proving that B = B′. �

Themain result of the paper – the existence and unicity of a fully optimal basis in a bounded region
– follows easily from Propositions 4.2 and 4.3, by combining with a counting result of Zaslavsky–Las
Vergnas.

Theorem 4.5. Let M be an acyclic oriented matroid on a linearly ordered set with smallest element e1.
Then an e1-bounded region of M has a unique fully optimal basis.
Furthermore, fully optimal bases establish a bijection between the set of e1-bounded regions of M

contained in e+1 and the set of uniactive internal bases.

Proof. By the unicity proved in Proposition 4.3, the mapping defined in Proposition 4.2 maps
injectively the set of uniactive internal bases ofM into the set of e1-bounded regions contained in e+1 .
By a result of T. Zaslavsky for real arrangements of hyperplanes [24], generalized by M. Las Vergnas
to oriented matroids [16], the number of uniactive internal bases is equal to the number of bounded
regions contained in e+1 . Therefore, the mapping of Proposition 4.2 is actually a bijection. Theorem 4.5
follows. �

Definition 4.6. Wedenote byαM the bijection of Theorem4.5 frombounded regions ofM to uniactive
internal bases, and call it the active orientation-to-basis bijection. WhenM is a bounded acyclic ordered
oriented matroid, we denote by α(M) the unique fully optimal basis of its fundamental region. We
have α(−AM) = αM(A). The active bijection is invariant under reorientation of M with respect to A,
up to symmetric difference with A.

The bijection αM is the bounded case of the active orientation-to-basis mapping.



1884 E. Gioan, M. Las Vergnas / European Journal of Combinatorics 30 (2009) 1868–1886

Fig. 7 shows an example of the active bijection. The sequences of covectors, or flags, considered
in the definition of fully optimal bases by adjacency properties are represented in each region by a
sequence of nested faces: in rank 3, a vertex, an edge, a region. The active bijection is graphically
determined by these flags. The fully optimal basis {b1 = e1, b2, b3} of a region is such that b2 is the
smallest pseudoline containing the vertex of the flag of this region, and b3 supports the edge of the flag.

We point out that since the feasible region of the pseudolinear program associated with a fully
optimal basis is the fundamental region, the feasible region is on the positive side of the objective
function independently of its geometric side. Thus, in terms of linear programming, the vertex of
a bounded region supporting the fully optimal basis is always a maximum, however the objective
function is changed to its opposite when the side changes. This phenomenon is illustrated in Fig. 7,
where there are bounded regions on both sides of f = f1 = 2.

The active mapping αM is extended to general oriented matroids in [11], together with
several specializations and variants, such as an activity-preserving bijection between subsets
and reorientations, or between no-broken-circuit subsets and acyclic reorientations (regions in a
hyperplane arrangement). The mapping αM can be computed directly by means of pseudolinear
programming in the bounded case [10]. It is calculated by deletion/contraction (extending the linear
programming classical construction by variable/constraint deletion), and also characterized by some
of its properties in [12]. Other particular cases with specific properties are studied in [7–9]. In the
uniform case [7], a vertex at finite distance determines uniquely a uniactive internal basis. These bases
correspond in a simple way to the optimal vertices of pseudolinear programming.
In the graphical case [8], bounded regions correspond to bipolar orientations. The general active

mapping provides a bijection between orientations and edge subsets (or subgraphs), and, in particular,
a bijection between acyclic orientations with a given unique sink and increasing spanning trees.
In the supersolvable case [9], the active mapping can be derived from a simpler one based on
an easy deletion/contraction construction. In particular, it turns out that a well-known bijection
of enumerative combinatorics [21, p. 25], between (n − 1)-permutations and increasing trees on
n vertices, is equivalent to the orientation-to-basis mapping applied to the regions of the braid
arrangement [9] (see also [8, Sec. 6–7] when applied to a complete graph).

5. Duality

Duality is meaningful in the definition of fully optimal bases, as already seen in Proposition 3.3.We
deepen in this Section the relations between fully optimal bases of bounded regions of the oriented
matroid and of its dual.

Proposition 5.1. Let M be an ordered matroid on a set E, and Bmin = {p, f , . . .}< be its minimal basis. A
basis B of M is internal and uniactive if and only if (E \ B) \ {f } ∪ {p} is internal and uniactive in M∗.

Proof. Let B be a uniactive internal basis of M . We have p ∈ B, otherwise p would be the smallest in
C(B; p), and hence externally active, contradicting B internal. We have f 6∈ B, otherwise f would be
the smallest in C∗(B; f ), and hence a second internally active basis element, contradicting B uniactive.
We have p ∈ C(B; f ) otherwise f would be externally active. Hence B′ = B− p+ f is a basis ofM ,

with C∗(B; p) = C∗(B′; f ), C(B; f ) = C(B′; p) so p is the minimal element of its fundamental circuit
with respect to B′. The fundamental cocircuits of elements of B′ are obtained by modular elimination
of f between the fundamental cocircuits of B containing f and C∗(B; p). Their smallest elements are
either unchanged or replaced with p, so they are never elements of B′, hence no element of B′ is the
minimal element of its fundamental cocircuit with respect to B′. All the same, the smallest elements
of fundamental circuits of elements of B′− f are unchanged and belong to B′, so only p is the minimal
element of its fundamental circuit with respect to B′. Since the fundamental circuit, resp. cocircuit, of
an element with respect to a basis inM equals the fundamental cocircuit, resp. circuit, of this element
with respect to the complementary basis in M∗, we have proved that (E \ B) \ f ∪ p is a uniactive
internal basis ofM∗
The converse implication is deduced by duality. �
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Proposition 5.2. An oriented matroid M on E is acyclic and p-bounded for p ∈ E if and only −pM∗ is
acyclic and p-bounded.

Proof. It suffices to show one implication, the other follows by duality. LetM be a p-bounded acyclic
orientedmatroidM . ThenM onemaximal covector is positive—M acyclic, and every positive cocircuit
of M contains p — M is p-bounded. If there exists a positive cocircuit of −pM , then it contains p
otherwise it would be a positive cocircuit of M not containing p, so it is a cocircuit D of M with
only negative element p. On the other hand M has a positive cocircuit D′ with smallest element p.
The elimination of p between D and D′ gives a positive cocircuit of M not containing p which is a
contradiction. So−pM is totally cyclic.
By hypothesis−pM has amaximal covectorwith only negative element p. Let C be a positive circuit

C of−pM , then it contains p by orthogonality with the previous maximal covector, so every positive
circuit of−pM contains p. That is, by definition,−pM∗ is acyclic and bounded. �

Proposition 5.1 defines a bijection between uniactive internal bases of M and uniactive internal
bases ofM∗. Proposition 5.2 defines a bijection between bounded regions ofM and bounded regions
ofM∗. The next proposition states that the active bijection is compatible with these two bijections.

Theorem 5.3. Let M be a bounded acyclic ordered oriented matroid, with minimal basis Bmin =
{p, f , . . .}<. We have

α(M) =
(
E \ α(−pM∗)

)
\ {f } ∪ {p}.

Proof. ForM an acyclic bounded ordered orientedmatroid, let B = α(M) and B′ = B\p∪ f . According
to Proposition 5.1, E \ B′ is uniactive internal in M∗. On the other hand, according to Proposition 5.2,
−pM∗ is acyclic and bounded.
The fundamental cocircuits of B′ are obtained by modular elimination (which is unique) of f

between C∗(B; p) = C∗(B′; f ) = D and C∗(B; b), b ∈ B − p. Thus C∗(B; b) and C∗(B′; b) have same
elements not belonging to D. Hence, the first algorithm of Proposition 4.2 for B in M and the second
algorithm of Proposition 4.2 for E \ B′ in −pM∗ define exactly the same sequence of covectors of M .
Hence E \ B′ = α(−pM∗). �

We call the duality property in Theorem 5.3 the active duality to distinguish it from the simpler
basis duality defined by α(M∗) = E \ α(M) (see [11]).

It has been noticed after Proposition 3.3 that a fully optimal basis B is determined by its flag
C∗M(B; b1) ◦ C

∗

M(B; b2) ◦ · · · ◦ C
∗

M(B; bi), 1 ≤ i ≤ r , formed by positive covectors in the associated
region. As noticed in the proof of Theorem 5.3, exchanging p = b1 = e1 and f in B does not change the
supports of these covectors. Hence the two sets of regions, one in M , the other in −pM∗ considered
about Proposition 3.3 are just exchangedwhen p and f are exchanged andM and−pM∗ are exchanged.
This gives exactly the active duality property.

The active duality can be considered as a strengthening of duality in linear programming. An
oriented matroid program P = (M; p, f ) is equivalent to a dual oriented matroid program P ∗ =
(M∗, f , p) [1, Chap. 10].More precisely, if B is an optimal basis ofP on E, then E\B is an optimal basis of
the dual programP ∗. Actually, the tableau of E \B is essentially obtained by transposing and negating
the tableau of B, and the Simplex Criterion for B is equivalent to the Simplex Criterion for E \ B, with
the variation that the feasible region is on the negative side of the objective function, and thus its sign
in the fundamental cocircuit of the hyperplane at infinity is negative and the sign of the hyperplane
at infinity in its fundamental circuit is positive ([1, Cor. 10.2.9]). Theorem 5.3 expresses that active
duality for a fully optimal basis amounts to transpose and negates its tableau, and exchange p and f
in the basis to consider a uniactive internal one. Notice that p and f appear to play here symmetric
parts, which is also the case, with a slight variation, in the dual program P ∗ = (M∗, f , p) where p
and f exchange their respective parts of hyperplane at infinity and objective function. Anyway, the
fundamental cocircuit of p resp. circuit of f with respect to α(M) inM equals the fundamental circuit
of f resp. cocircuit of pwith respect toα(−pM∗) inM∗ (exchanging p and f in the basis does not change
the first fundamental circuit and cocircuit). Hence, according to the definitions, the fully optimal basis
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of −pM∗ is an optimal basis of the dual program P ∗ = (M∗, f , p). Thus, the active duality property
refines pseudolinear programming duality, see also [10].
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